SPB Series

DIN rail mounting switching mode power supply
 - Features

- DIN rail type and fixing screw type mountings

- Built-in overcurrent protection, output short circuit protection, overheat and over voltage limit protection circuit(SPB-120/240)
- Built-in power factor correction circuit(SPB-120/240)
- Low-voltage LED indicator
- Slim-type size(SPB-015: W22.5×H90×L90mm)
- Minimizes noise and ripple
- Improves user safety with terminal cover
- Designed to minimize heat
- Output power: 15W, 30W, 60W, 120W, 240W
- Output voltage: 5VDC, 12VDC, 24VDC, 48VDC

\square Ordering Information

| SPB |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Specifications

Model			$\begin{aligned} & \text { SPB } \\ & -015 \\ & -05 \end{aligned}$	$\begin{aligned} & \text { SPB } \\ & -015 \\ & -12 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPB } \\ & -015 \\ & -24 \end{aligned}$	$\begin{aligned} & \text { SPB } \\ & -030 \\ & -05 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SPB } \\ & -030 \\ & -12 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPB } \\ & -030 \\ & -24 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SPB } \\ & -060 \\ & -12 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SPB } \\ & -060 \\ & -24 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SPB } \\ & -060 \\ & -48 \end{aligned}$	$\begin{aligned} & \text { SPB } \\ & -120 \\ & -12 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPB } \\ & -120 \\ & -24 \end{aligned}$	$\begin{aligned} & \text { SPB } \\ & -120 \\ & -48 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SPB } \\ -240 \\ \hline-12 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SPB } \\ & -240 \\ & -24 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPB } \\ & -240 \\ & -48 \\ & \hline \end{aligned}$
Output power			15W	15.6W		25W	30W	31.2W	60W		62.4 W	96W	120W		240W		
Voltage			100-240VAC (permissible voltage: $85-264 \mathrm{VAC} / 120-370 \mathrm{VDC}$)														
Frequency			$50 / 60 \mathrm{~Hz}$														
$\stackrel{\text { ², }}{\text { ¢ }}$	Efficiency*1	100VAC	77\%	80\%	83\%	77\%	82\%	84\%	81\%	84\%	85\%	82\%	82\%	85\%	87\%	89\%	89\%
	(Typical)	240VAC	76\%	79\%	82\%	78\%	83\%	85\%	83\%	86\%	87\%	85\%	85\%	88\%	90\%	92\%	92\%
	Power factor ${ }^{* 1}$		-			-			-			Min. 0.9			Min. 0.9		
	Current consumption*1 (Typical)	100VAC	0.35A	0.36A	0.34A	0.56A	0.63A	0.63A	1.24A	1.21A	1.19A	1.19A	1.49A	1.43A	2.76A	2.71A	2.73A
		240VAC	0.19A	0.19A	0.19A	0.30A	0.35A	0.35A	0.66A	0.65A	0.64A	0.52A	0.61A	0.61A	1.14A	1.12A	1.13A
Power factor correction circuit			-			-			-			Built-in			Built-in		
Voltage			5VDC	12VDC	24VDC	5VDC	12VDC	24VDC	12VDC	24VDC	48VDC	12VDC	24VDC	48VDC	12VDC	24VDC	48VDC
Current			3A	1.3A	0.65A	5A	2.5A	1.3A	5A	2.5A	1.3A	8A	5A	2.5A	20A	10A	5A
Voltage adjustment range ${ }^{\text {*2 }}$			Max. $\pm 10 \%$			Max. $\pm 10 \%$			Max. $\pm 5 \%$			Max. $\pm 5 \%$			Max. $\pm 5 \%$		
Input variation*3			Max. $\pm 0.5 \%$														
כ	Load variation		Max. $\pm 1 \%$														
$\stackrel{\square}{3}$	Ripple\&Ripple noise ${ }^{* 1, *_{4}}$		$\left.\begin{array}{l\|l\|}\text { Max. } \\ \pm 1.5 \%\end{array}\right)$ Max. $\pm 1 \%$			$\begin{aligned} & \text { Max. } \\ & \pm 1.5 \% \\ & \hline \end{aligned}$	Max. $\pm 1 \%$		Max. $\pm 1 \%$			Max. $\pm 1 \%$			$\begin{aligned} & \text { Max. } \\ & \pm 1.5 \% \end{aligned}$	Max. $\pm 1 \%$	
Start-up time ${ }^{* 1}$ (Typical)		100VAC	500 ms	550ms	650 ms	600 ms	550ms	550 ms	520 ms	550ms	1200 ms	1200 ms	760 ms	1200 ms	75 ms	87ms	75 ms
		240VAC	550 ms	550ms	650 ms	600 ms	550 ms	550 ms	530 ms	550 ms	400 ms	400 ms	280ms	400 ms	45 ms	56 ms	45 ms
Hold time ${ }^{* 1}$ (Typical)		100VAC	24 ms	25 ms	25 ms	20 ms	15 ms	15 ms	15 ms	14 ms	15 ms	98ms	81 ms	87 ms	33 ms	36 ms	25 ms
		240VAC	190 ms	190 ms	190 ms	130 ms	110 ms	110 ms	100 ms	110 ms	108 ms	97ms	81ms	86 ms	33 ms	36ms	25 ms

[^0]
DIN rail Mounting Type Switching Mode Power Supply

Specifications

Model			$\begin{aligned} & \text { SPB } \\ & -015 \\ & -05 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPB } \\ & -015 \\ & -12 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPB } \\ & -015 \\ & -24 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPB } \\ & -030 \\ & -05 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPB } \\ & -030 \\ & -12 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPB } \\ & -030 \\ & -24 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SPB } \\ -060 \\ -12 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SPB } \\ & -060 \\ & -24 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPB } \\ & -060 \\ & -48 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SPB } \\ -120 \\ -12 \\ \hline \end{array}$	$\begin{aligned} & \text { SPB } \\ & -120 \\ & -24 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SPB } \\ -120 \\ -48 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SPB } \\ -240 \\ -12 \\ \hline \end{array}$	$\begin{aligned} & \text { SPB } \\ & -240 \\ & -24 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SPB } \\ -240 \\ -48 \\ \hline \end{array}$
Inrush current protection (Typical)		100VAC	7A	7A	7A	7A	7A	6A	13A	14A	10A	9A	16A	10A	8A	8A	8A
		240VAC	32A	30A	31A	29A	31A	29A	19A	17A	37A	37A	20A	37A	22A	25A	26A
Output over current protection*4			105 to 160\%														
Output over voltage protection			-			-			-			$\begin{aligned} & \hline 16.0 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 30.0 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 58.0 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 16.0 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 30.0 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 58.0 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$
Output low-voltage indicate			$\begin{aligned} & 4.2 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 9.6 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 20.0 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 4.2 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 9.6 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & \hline 20.0 \mathrm{~V} \\ & \pm 10 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 9.6 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 20.0 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 43.0 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 9.6 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 20.0 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 43.0 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 10.0 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 20.0 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 43.0 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$
Indicator			Output indicator: green LED, Output low-voltage indicator: red LED														
Insulation resistance			Min. 100M Ω (at 500VDC megger between all input terminals and output terminals)														
Dielectric strength			3000VAC $50 / 60 \mathrm{~Hz}$ for 1 min .(between all input terminals and output terminals)														
			1500VAC $50 / 60 \mathrm{~Hz}$ for 1 min .(between all input terminals and F.G.)														
Vibration			0.75 mm amplitude at frequency of 10 to 55 Hz (for 1 min .) in each $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction for 2 hour														
Shock			$300 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 30G) in each X, Y, Z direction for 3 times														
EMS			Conforms to EN61000-6-2														
EMI			Conforms to EN61000-6-4														
Safety			IEC60950, IEC50178														
Environ -ment	Ambient temp.		-10 to $50^{\circ} \mathrm{C}$, storage: -25 to $65^{\circ} \mathrm{C}$														
	Ambient	humi.	25 to 85% RH, storage: 25 to 90% RH														
Input cable			AWG24 to 19			AWG24 to 19			AWG21 to 19			AWG21 to 19			AWG18 to 16		
Protection			IP20(IEC standard)														
Approval			C \in														
Weight ${ }^{* 5}$			Approx. 202g (approx. 129g)			Approx. 249g (approx. 176g)			Approx. 347g(approx. 274 g)			Approx. 570g (approx. 466 g)			Approx. 866g (approx. 736g)		

$※ 5$: The weight includes packaging. The weight in parentheses is for unit only
※Environment is rated at no freezing or condensation.

\square Output Derating Curve By Ambient Temperature

Load

\square Over-Heating Protection

If the inner temperature of the switching element is around $140^{\circ} \mathrm{C}$ by overheat, it stops switching operation and becomes open state. Output voltage is not output.

- To remove the power supply on the rail

First put a screw driver into the part © and push it downward.

(L)

Panel
meter
(M)

Tachol Speed/ Pulse meter
(N)
Displ
(N)
Display
unit
unit
(O)
Sens

Sensor
controller

(P)
Switching
mode power
supply
:---
Stepper

motor\&
Driver\&Controller
(R)
(R)

Logic
panel
(S)
Field
network
device
(T)
Software

Softwar

Other

SPB Series

Unit Description

- SPB-015/030 Series
- SPB-060/120/240 Series

1. Output power [+V] terminal
2. Output power $[-\mathrm{V}]$ terminal
3. Output(DC ON) indicator(green)
4. Output low voltage(DC LOW) indicator(red)
5. Output voltage adjuster(V.ADJ)
6. Input power [L] terminal
7. Input power [N] terminal
8. Frame ground [F.G.] terminal

※SPB-015, SPB-060 Series has an output power(+V) terminal(1) and an output power(-V) terminal(2).
Dimensions

- SPB-015 Series

- SPB-060 Series

- SPB-030 Series
(unit: mm)

- SPB-120 Series

- SPB-240 Series

DIN rail Mounting Type Switching Mode Power Supply

Cautions During Use

- Caution for operating
- This product does not have the function for parallel or series operation.
- The output current must be used within the rated specification. If over current is applied to the product, over current protection is operating. It causes shorten the life cycle of the product.
- The output voltage must be used within the rated output specification.
- For the product, which has the control function for over-voltage, if making the output voltage adjuster(V.ADJ) to over rated voltage, the function starts to work.
- This product has the function of over-heating protection.

The over-heating protection operates when the product has over-heating condition.
The product normally operates if the load is removed for over 5 minutes.

- In case of the SPB-060, it does not have the harmonics suppression and power factor improvement circuit.

To improve harmonics suppression and power factor, install the additional device.

- In case of the SPB-060, it uses condenser rectification, and power factor is within 0.4 to 0.6 range. To use a cabinet panel or a electric transformer, select input power capacity of this product as below formula.

$$
\text { Input apparent power[VA] }=\frac{\text { Output active power[W] }}{\text { Power factor } \times \text { Efficiency }}
$$

- This product is provided with a noise filter, but noise is variable according to operating conditions such as installation environment and wiring.
-When the inner fuse is damaged, replace the fuse of same specification.
- Caution for mounting
- Mount this product on the surface of metal panel vertically for the reliability.
- Please mount this product at a well-ventilated place in order to increase the heat radiation efficiency.
- Effective mounting

When installing more than two power supplies, $\min .20 \mathrm{~mm}$ distance is required to radiate heat effectively. Assure min .75 mm distance of the upper or the lower product and mount the products as following figure.

- Dielectric or insulation resistance test when this unit is installed in the control panel.
- Separate the unit completely from a control panel circuit.
- Short all terminals of the unit.
- Caution for connecting the input power terminal

Connect input line(AC) to the input terminal correctly.
When you connect this to the other terminal, it may cause damage to the power supply.

- Do not use this unit at below places.
- Place where there are severe vibration or impact.
- Place where strong alkalis or acids are used.
- Place where there is direct ray of the sun.
- Place where strong magnetic field or electric noise are generated.
- Installation environment
- It shall be used indoor
- Altitude max. 2000m
- Pollution Degree 2
- Installation Category II

[^0]: ※1: It is for 100% load.
 ※2: Adjusting voltage by the output adjuster(V.ADJ), it is changed the below voltage adjustment range.
 ※3: It is for the rated input voltage 100-240VAC(85-264VAC), and 100% load.
 $※ 4$: It is for the rated input voltage $100-240$ VAC.

